Clustering-style Self-Supervised Learning

Mathilde Caron - FAIR Paris & Inria Grenoble June 20th, 2021

CVPR 2021 Tutorial: Leave Those Nets Alone: Advances in Self-Supervised Learning

Self-Supervised Learning (SSL)

Designing a learning task that does not rely on human annotations

Example: Colorization (Zhang et al. | 2016)

Designing SSL tasks is an active research area

Supervised pre-training: labels classification

Training images + labels

Neural network

Classification

Supervised pre-training: labels classification

Training images + labels

Neural network

Classification

We do not have labels !

Training images + labels

Neural network

Classification

Can we replace labels with clustering?

DeepCluster: Deep Clustering for Unsupervised Learning of Visual Features

Mathilde Caron, Piotr Bojanowski, Armand Joulin, Matthijs Douze ECCV 2018 github.com/facebookresearch/deepcluster

FACEBOOK AI

dataset

DeepCluster

Invariance to cropping

How to Evaluate Self-Supervised Learning?

Use learned representations for downstream tasks

How to Evaluate Self-Supervised Learning?

Example: Object detection on Pascal VOC07 dataset

Results on Object Detection on Pascal VOC07

DeepCluster also produces... clusters!

Clustering visualization

Clustering evaluation

• Does not scale (depends on the dataset size)

The clusters (i.e. pseudo-labels) are refined during training

• Does not scale (depends on the dataset size)

Huge dataset: we can afford only 2 epochs!

Problem: clusters are refined only once...

• Does not scale (depends on the dataset size)

Even bigger dataset: we never see an image twice

Problem: the clusters are never refined!

- Does not scale (depends on the dataset size)
- Do we really need k-means?

- Does not scale (depends on the dataset size)
- Do we really need k-means?

- Does not scale (depends on the dataset size)
- Do we really need k-means?

- Does not scale (depends on the dataset size)
- Do we really need k-means?
- Tricks to avoid collapse

- Does not scale (depends on the dataset size)
- Do we really need k-means?
- Tricks to avoid collapse

- Does not scale (depends on the dataset size)
- Do we really need k-means?
- Tricks to avoid collapse
- Importance of random cropping is only implicit

How to overcome these limitations?

SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, Armand Joulin NeurIPS 2020

github.com/facebookresearch/swav

FACEBOOK AI

We can diAdatly needing propagation to the strength to the str

neural network output

Constraint: Total score for each output must be the same

neural network output

<u>Constraint:</u> Total score for each output must be the same

_			

Sinkhorn adjust the scores !

		neural network output				
				output 3		
minibatch only !	À					
	The second secon		: : :			
	(I)					

Recap'

- We don't need k-means
- Explicit constraints to prevent collapse
- Scalable

SwAV: the full picture

one minibatch

SwAV: the full picture

Sinkhorn adjustment

FACEBOOK AI

Multi-crop

Sinkhorn adjustment

Classification loss

Jigsaw – Noroozi & Favaro. 2016 PIRL – Misra et al. 2020

Global crops

Multi-crop

Local crops

Global crops

Local predict the pseudo-label of global

Local-to-global matching

* networks all trained for 400 epochs

Linear benchmark on ImageNet

* networks all trained for 400 epochs

Linear benchmark on ImageNet

SwAV vs Supervised Pretraining

We evaluate representations on different downstream tasks.

SwAV vs Supervised Pretraining

Classification – Linear

Object Detection - Full finetuning

Great milestone for SSL in 2020

SSL outperform supervised pre-training in transfer learning

Excellent performance on ImageNet e.g. SimCLR-v2 (Chen et al) and BYOL (Grill et al) > 79% top-1 !!

Great milestone for SSL but...

Recent SSL methods are very similar to each other (simsiam Chen & He 2020)
→ performance saturation

Let us seek progress in an orthogonal direction !

Can we improve SSL by using Vision Transformers?

DINO: Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, Armand Joulin Under review

github.com/facebookresearch/dino

FACEBOOK AI

ConvNets & Vision Transformers

ConvNets is de facto architecture for images.

Recently, Vision Transformers (Dosovitskiy et al. 2020) have emerged as an alternative to ConvNets.

From SwAV to DINO

Mean Teacher – Tarvainen et al. 2017 MoCo - He et al. CVPR 2020 BYOL – Grill et al. NeurIPS 2020

Sinkhorn score adjustment

From SwAV to DINO

Mean Teacher – Tarvainen et al. 2017 MoCo - He et al. CVPR 2020 BYOL – Grill et al. NeurIPS 2020

Sinkhorn score adjustment

DINO: Self-Distillation with No Labels

Collapse to one unique dimension

Centering

Centering

Collapse to uniform assignment

Centering + Sharpening

DINO: ConvNet VS ViT

DINO: ConvNet VS ViT

DINO + ViT: excellent K-NN performance

Application to copy detection

DINO & ViT: Recap'

☑ DINO trains to high performance with ViTs

- ☑ k-NN performance ++
- \rightarrow Applications to copy detection and image retrieval
- □ Interpretability

Self-Attention visualizations

• We look at the self-attention of the [CLS] token of the last block

Self-Attention visualizations

• We look at the self-attention of the [CLS] token of the last block

supervised

DINO applied per-frame to a video

Different attention heads focus on different parts

Application to video object segmentation on DAVIS17

Application to video object segmentation on DAVIS17

J&M

Thank You

